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The usual development of the continuous-time random walk (CTRW) assumes that jumps and time intervals
are a two-dimensional set of independent and identically distributed random variables. In this paper, we
address the theoretical setting of nonindependent CTRWs where consecutive jumps and/or time intervals are
correlated. An exact solution to the problem is obtained for the special but relevant case in which the corre-
lation solely depends on the signs of consecutive jumps. Even in this simple case, some interesting features
arise, such as transitions from unimodal to bimodal distributions due to correlation. We also develop the
necessary analytical techniques and approximations to handle more general situations that can appear in

practice.
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I. INTRODUCTION

For more than four decades, since their introduction in
1965 by Montroll and Weiss [1], continuous-time random
walks (CTRWSs) have been applied to virtually any field in
which one wishes to provide a dynamical description of the
microstructure of a given random system. A huge number of
examples and applications can be found in the literature, of
which we cite only a handful: transport in disordered media
[2,3], random networks [4], self-organized criticality [5],
electron tunneling [6], earthquake modeling [7,8], hydrology
[9,10], time-series analysis [11,12], and finance [13-21].

The CTRW generalizes the ordinary random walk since in
the latter the steps of the random walker are made at equal
intervals of time, while in the CTRW the interval between
steps is a continuous random variable. In this sense, the
CTRW is related to several other extensions of random walks
in continuous time, like semi-Markov processes or Markov
renewal processes [22], although the seeds of this idea can be
traced back to the 1920s with the pure birth Poisson process
[23,24].

A great number of developments of the CTRW are based
on the assumption that the magnitude of the steps (or jumps)
and the time intervals between them (also called sojourns)
are a two-dimensional set of independent and identically dis-
tributed random variables. While in many cases this is a
convenient assumption which allows for simple develop-
ments, there are some other cases in which independent
walks are clearly insufficient to explain some aspects of the
physical reality, and correlations between consecutive step
sizes and/or waiting times must be considered. We have met
with such a case in our study of financial time series regard-
ing their extreme time statistics [25], where jump magnitudes
(transaction-to-transaction  returns)  show  short-range
memory, but it seems to be relevant also in earthquake mod-
eling, where some evidence pointing to the presence of cross
correlations between simultaneous and sequential earthquake
magnitudes and recurrence times has been reported [26].
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Successive recurrence times appear to be positively self-
correlated as well but, oddly enough, consecutive magni-
tudes seem to be independent in this case.

Our goal in this paper is to address the theoretical setting
of nonindependent CTRWs, a class of random walks that can
account for many physical situations. In this kind of walk,
jumps and sojourns are no longer independent random vari-
ables and their value at a given step may depend on previous
steps. We develop the formalism for the Markovian case in
which the magnitudes of a given jump and time interval
depend only on the preceding step. We also obtain a com-
plete solution to the problem when the correlation between
consecutive steps solely depend on the sign of the previous
jump (that is, whether the previous jumps is increasing or
decreasing but not on its magnitude). Particular examples
corresponding to this solvable case allow us to visualize and
quantify some interesting consequences of the existence of
correlations between steps as, for instance, the transitions
from unimodal to bimodal distributions. Finally, we also de-
velop the necessary perturbation techniques to deal with
more general situations.

The paper is organized as follows. In Sec. II we outline
the traditional CTRW based on the assumption of indepen-
dence between events. In Sec. III we present the general
setting for nonindependent CTRWs that are still amenable to
analytical treatment. In Sec. IV we present an exact solution
to the problem. Section V is devoted to considering weak
dependent models for which we develop a complete pertur-
bation technique. Conclusions are drawn in Sec. VI. Al-
though this work is essentially technical, some even more
technical aspects are in an Appendix.

II. THE INDEPENDENT CTRW

Suppose that a given random process X(z) evolves follow-
ing a CTRW. In this picture, any realization of X(#) consists
of a series of step functions, and X(¢) changes at random
times ...,f_,,f_;,ty,t;,t5,... While it remains fixed in place
between successive steps. The interval between these succes-
sive steps is a random variable Az,=t,—t,_;, which we call
the sojourn or waiting time. At the conclusion of the nth
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sojourn, X(f) experiences a random change, or jump, given
by

AXn = AXn(Atn) = X(tn) - X(tn—l) =X, = X1

In the usual model of the CTRW, waiting times Az, and
random jumps AX,, constitute a two-dimensional set of iden-
tically distributed random variables (AX,,,Ar,), described by
the corresponding joint probability density function (PDF)

p(&.7),
Pl PdEdr=Prob{é < AX, = £+ d7< Ar, = 747
As usual, two marginal PDFs can be derived from p(&,7)
h(EdE=Prob{é < AX, < £+ dé&} (1)
and
Y(7)d7T=Prob{r < Ar, < 7+d},

just by integrating over the opposite variable:

h(§)=f p(& 7dr, ¢(T)=j p(&, )dE.
0 —o0

In this setup, each pair of random variables (AX,,Az,) is
independent of any other pair (AX,,,Ar,), m#n, but any
degree of correlation is still allowed between AX, and At,
themselves.! Some CTRW processes belonging to this cat-
egory can be found in [17-21], for instance, and sometimes
are also named non independent models [19], since the label
independent is then reserved for the particular case in which
AX, and At, are also mutually independent random vari-
ables, i.e., when

p(&.7) =h(& (7). 2)

This divergence in the existing notation may therefore lead
to misinterpretation. We prefer to call Eq. (2) the fully inde-
pendent CTRW, and keep the term independent CTRW for
any memoryless process with arbitrary joint PDF.

The chief objective of the CTRW formalism is to obtain
the probability density function of X(¢). This PDF, called the
propagator, is defined by

p(x,0)dx = Prob{x < X(¢) < x + dx|X(t,) = 0},

where in what follows we shall assume that the initial jump
occurred at 7,=0. As is well known, the propagator obeys the
following renewal equation [18]:

'From a mathematical point of view, this implies that X(1)=X N(1)»
N(t)=sup{n|t,=<t}, can be thought of as a generalization of a semi-
Markov process, since X, is, in general, not a Markov chain but a
Markov discrete process with continuous states, and At, is a ran-
dom variable depending on both X, and X,,_; through AX,,.
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t ©
p(x,1) = polx,1) + f dt'J plx—x",t—1t")p(x',t")dx".
0 —00

3)

The function pg(x,?) is the propagator prior to the first jump
and, since the trajectories of X(¢) consist of a series of step
functions, we write

polx,1) =W¥(1)8(x), (4)

where W(r) is the probability that no transaction has occurred
before time ¢,

V(1) = f Wi')dr' . (5)

We can solve Eq. (3) in terms of the joint Fourier-Laplace
transform

ﬁ(w,s)=f dte‘”f e“'p(x,1)dx.
0 —o0

The solution is

- Polw,s)
Plos)=—"—"—, (6)
1 - plw,s)
where py(w,s) and p(w,s) are the joint Fourier-Laplace
transforms of the functions py(x,) and p(x,r). We easily see
from Egs. (4) and (5) that the explicit form of py(w,s) is

ﬁ()((l),s) = 1 _;b(S) s

where &(s) is the Laplace transform of the pausing-time
density ¢(7).

III. A GENERAL NONINDEPENDENT WALK

As we have explained, the CTRW outlined in the preced-
ing section relies on the assumption that the pairs (AX,,,Az,)
are independent two-dimensional random variables. How-
ever, as we mentioned in Sec. I, there are many situations in
which the assumption of independence may be doubtful
[25,26]. We shall thus generalize the CTRW formalism in
order to account for memory effects due to correlations be-
tween different sojourns and/or jump increments.

Among the many ways of doing this extension, we choose
a simple, but yet general, method which consists in assuming

that the joint density of k& consecutive changes,
P& Tty Tuots oo s ks Tay),  satisfies  the  Markov
property

p(gn’ Tn;gn—la Tp—15 -+ ;gn—kv 7-n—k)

k-1
= H P( gn—m’ 7-n—m| gn—m— 1> Tn—m-1 ) P( gn—k 7-n—k) s
m=0

where
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P& 7€ T)AE dT =Problg’ < AX, < & +d¢';
X7 < At, <7 +d7|AX,_ = &
XAtn_l = T}. (7)
This means that the pair (AX,,At,) depends on all the pre-
vious transitions only through the immediately preceding one
(AX,_;,At,_;). In an analogous way to the independent walk

described by Eq. (3), the integral equation governing the
evolution of the return PDF is given in this case by the

renewal equation
0 t
&) +J dx’J p(x',t'
—0 0

Xp(x—x',t—t'|x",t")dt’, (8)

p(x’té:’T):pO(x’t §,T)

where py(x,t|€,7) is the propagator prior to the first jump,
and similarly to Eq. (4) we write

£1)=0x)W(r

pO(-x’t 6’ T)’ (9)

where W(z| £, 7) is the cumulative distribution of the waiting
time and is related to the transition density p(x’,t'|£,7) by
V(& 1) = f dt’f p(x’,t'|& T)dx". (10)

t —o0

Observe that in this case the process X(z) is not Markov-
ian because its PDF p(x,z| &, 7) depends on both the magni-
tude of the previous jump &£=X,—X_; and its sojourn time
T=ty—t_;; in other words, the probability distribution of the
process at a given time depends on two previous times #, and
t_;. We should note at this point that even the independent
CTRW is, in general, a non-Markovian process. The only
case in which the independent CTRW is Markovian is when
it is a fully independent CTRW, and the set of random times
..osty,t1,1,... 1s Poissonian, that is, when the pausing-time
density ¢(7) obeys the exponential law [3]

W) =Ne™ (A>0).

Let us remark that the dependent CTRW outlined above is
always non-Markovian even for this Poissonian density.

We also note that in the case of independent increments
discussed in Sec. II we have

p(xl’t,|§’7-) ZP(X,J’),

and Eq. (8) reduces to Eq. (3).

The integral equation given in Eq. (8) is the general equa-
tion that governs the evolution of the random process X(¢)
and it must be solved if we want to obtain the propagator for
this nonindependent case. Contrary to the independent case,
Eq. (8) cannot be solved for any form of the joint density p
by means of transform methods. Indeed, the Laplace trans-
form with respect to ¢ of Eq. (8) is
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] t e}
§,T)+f dt e"‘”f dt’J p(x',t'
0 0 —o

Xpx—x',t—t'|x',t")dx',

[3()6,5 g’ T) =ﬁ0(x’s g’ T)

where the caret over p and p, denotes the time Laplace trans-
form. Note that

o0 1 s} 0
J dt e J dt' -+ = J dt' e f dt'e™" -
0 0 0 0

where we have exchanged the order of integration and per-
formed the change of variables "=7—¢'. Then

§,7)+f dt'e_”/f p(x',t'
0 —o0

x',t")dx'".

ﬁ(x’s §’7)=ﬁ0('x9s g’T)

Xp(x—x',s

Finally, the Fourier transform with respect to x of this equa-

tion yields
§,7')+f dt’e_”/f eiwx/p(x',t’
0 —0o0

x',t")dx', (11)

ﬁ(a)’s §’T)=ﬁ0(w5s §7T)

Xplw,s

which is the farthest we can go without specifying
plx’ 1€, 7).

IV. A SOLVABLE CASE

The integral equation (11) cannot be solved for any arbi-
trary form of p. However, for the independent case in which
px’, '€, 7)=p(x',t') and p(w,s|x",t")=p(w,s), we recover
from Eq. (11) the solution given by Eq. (6). Another case in
which the level of difficulty is somewhat reduced is when
waiting times and jumps are not related to each other. In such
a case, the joint density factorizes as

£7) = y(t'|& Dh(x'|E,7).

We will also assume the further simplification

&)= t)h(x'|§), (12)

in which correlations between consecutive waiting times
have been neglected, and we have also assumed that the
waiting-time PDF ¢(¢") does not depend on the magnitude of
the jumps—a situation that, as mentioned above, has been
detected in some financial time series [25].

The renewal equation for the propagator of X(¢) now
reduces to [cf. Egs. (8) and (9)]

p(x',1'

plx',t’

plxt §)=5(X)‘1’(t)+J dt' y{1")
0

XJ h(x'|&px—x',t—t'|x",t")dx' .

—00

The (time) Laplace transform of this equation yields
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plx,s|é) = 5(x)‘i’(s) + z,Ab(s)J h(x'|&)p(x - x',s|x")dx’",

(13)

where, in terms of the density J,Ab(s), the waiting-time distri-
bution function \ff(s) can be written as

1 - ds)

N

P(s) =

Let us now suppose that the conditional jump density
h(x"| &) has the form

h(x'|€) = h(x")[1 + eg(x"[)], (14)

where € is an arbitrary parameter and A(x’) is the uncondi-
tional jump density—cf. Eq. (1)—which is related to h(x'|§)
by the constraint

h(x') = f h(x'|Oh(§)dE. (15)

Note that this constraint prevents us from considering arbi-
trary functional forms for 4(x’|&) and h(x'). For instance, if
we set h(x'|&)=[0x'-NE)+8(x"+NE]/2, N#1, as in the
case of the random walker with shrinking step sizes [27], Eq.
(15) implies h(x")=48(x"). The distinctive point here is that,
unlike geometric random walks, our (unconditional) PDF of
AX,, does not depend on n.

The function g(x'|€) represents the correlation between
previous and current jumps and € governs its strength. Note
that in order to meet Eq. (15) together with the normalization

f h(x'|&)dx’ =1 for all €,

the correlation g(x’|€) must satisfy (see next section for a
general discussion on this issue)

Jh(x’)g(x’|§)dX’=f g(x'|Oh(§)dé=0.

With the form of A(x'|€) given in Eq. (14) the integral
equation for the propagator, Eq. (13), reads

Px,s|6) = 8x)W(s) + @(S)f h(x")[1 + eg(x"|é)]

Xplx—x',s|x")dx’. (16)

We will solve this equation for any even jump density,
h(x")=h(-x"), (17)

and when the correlation function has the following form:

!

! X g !
g(x'|§) = = =san(x")sgn(é), (18)
'l 4]
meaning that the dependence between current and previous
jumps is only through their signs. In other words, the corre-
lation depends on whether consecutive jumps are increasing
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or decreasing but not on their magnitude. From Eq. (14) we
see that, in this case, since h(x’ | &) must be positive definite,
—1=<e=<1. In fact, this model might be interpreted as the
simplest persistent CTRW [3], in which the probability that
the process does not change its direction of movement is
equal to (1+€)/2, but where neither jumps nor sojourns are
affected by this persistence. This is the kind of memory we
adopted in [25] in order to model the observed anticorrela-
tion, with origin in the bid-ask bounce effect: tick-by-tick
price changes tend to oscillate back and forth between two
values due to the bid-ask spread.

Let us note that the functional form of g(x’|&) given in
Eq. (18) implies that any dependence on ¢ is only through
sgn(&)=¢&/€|. Thus p(x,t] &) =p(x,t|sgn(€)), which allows us
to write

p(x,1&) = pP(x,00(8 + p(x,NO(- ¢,  (19)

where O(¢) is the Heaviside step function. The substitution
of Eq. (19) into Eq. (16) yields for p*)(x,s) the following set
of coupled integral equations:

PP (x,5) = ST (s) + (1 + €)gs) J ) h(x")p(x = x',5)dx’
0

0
+(1 - e)@(s)j h(x’)ﬁ(‘)(x—x',s)dx’,

ﬁ“%xJ)=5uyP@)+(1-a@m{f h(x)pP (x = x',5)dx’
0

0
+(1+ e)lz(s)f h(x")p(x = x',5)dx’ .

Now the Fourier transform with respect to x turns this set
into a system of algebraic equations:

P(w,5) =V(s) + YAs)[(1 + OH(@)p'(w,5)

+(1- 9H(- ) (w,s5)], (20)

7N w,5) = V(s) + d(s)[(1 - OH ()5 (w,5)
+(1+ eH(- w)p(w,s)], (21)
where
H(w) = f” e h(x")dx'
0

is the “half” Fourier transform of %(x). Obviously,
h(w) = H(w) + H(- o), (22)

where h(w) is the “complete” Fourier transform of A(x). We

note that in writing Egs. (20) and (21) and Eq. (22) we have

imposed the symmetry of (x) assumed in Eq. (17).
Solving for Egs. (20) and (21), we have
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1- 2612/(S)I?I(1 )
1= (1 + &) i(s)h(w) + 4€g(s)| H(w)|?

PN w,s) =

(23)

where we have used the fact that for real jump densities A(x)

the identity H(w)H(-w)=|H(w)|* holds. The final solution to
the problem is thus given by the combination of Egs. (19)
and (23). Therefore, under the assumptions given in Egs.
(12) and (14) and the special form of the correlation given in
Eq. (18), we have been able to obtain an exact expression for
the Fourier-Laplace transform of the propagator valid for any
forms of the waiting-time density ¢(7) and jump density
h(&), provided that the latter is an even function of ¢ with no
bias.

Another interesting quantity is the unconditional propaga-
tor p(x,r) defined by

p(x.1) =f px.1|§h(§)dé.

In the analyzed case in which p(x,z|£) can be decomposed as

in Eq. (19) we have

1
plx,1) = 5[p(+)(x,t) +p(x,0)]. (24)
From Egs. (23) and (24) we get

1 - edl(s)h(w)
1= (1 + €)is)h(w) + 4e(s)| H(w) 2

Flw,s) = W(s).

(25)

Note, incidentally, that when e=0 this expression reduces to
W (s)

1= Hs)h(w)

which agrees with the solution of the independent case dis-

cussed in Sec. II [cf. Eq. (6)].

Aside from the unconditional PDF p(x, ), which provides
maximal information about the evolution of X(¢), there is
another quantity of considerable practical interest: the (un-
conditional) variance of X(z). This quantity has the advantage
that it does not require the knowledge of the entire jump

distribution i(§). It suffices to know the PDF ¢{(7) and the
following two moments of A(&):

plo,s) =

MlEJ |€[n(§)d¢  and MzEJ Eh(&)dé.

—o0

Let (X*(1)) be the unconditional second moment of the pro-
cess:

X*(1) = f ) x*p(x,1)dx,

and let us denote by #i,(s) its Laplace transform
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1, (s) = fw e X2 (1))dt.

0

This can be written in terms of the joint Fourier-Laplace
transform of p(x,z) by

Fp(w,s)

Jw?

() = — (26)

w=0

Recall that a direct consequence of the unbiased assumption
expressed in Eq. (17) is that the odd moments of A(&) are
equal to zero. This implies that all odd moments of process
X(¢) vanish as well; in particular, this means that the variance
of X(7) coincides with its second moment. The combination
of Egs. (25) and (26) leads, after some manipulations, to the
relation

s) ) g2 (s)
- +2€u; ~ - .
s[1 = (s)] s[1 = )11 = eils)]
(27)

1y(s) = py

Let us return to the propagator and particularize to the

case of Poissonian waiting times for which ¢(7)=\e™" and
Y = s \f’ = 28
W) AN+s ®) AN+s (28)
Now Eq. (25) reads
_ A +5 - \eh(w)
Plw,s)= - —,
A +5)2 = A1+ &)\ + 5)h(w) + 4Nl H(w)]?
(29)

whose inverse Laplace transform yields the unconditional
characteristic function [28]

Plw,) = e-““-<1+f>’7<w>’2](cosh[mié(w)/z]

+u—a$@mmnﬁ@a0, (30)
k(w
where

f(w) = V(1 + &272(w) — 16 H(w)- 31)

As far as the second moment is concerned, Eq. (27) can
be inverted at once with the result

2

(X)) = okt + %D\(l —or+e M9 1] (32)
Observe that in the independent case (€=0) the variance
shows an ordinary diffusion behavior, while correlations in-
troduce a richer dynamics.

In order to invert Eq. (30) and thus obtain an expression
for the propagator p(x,7), we must choose a functional form
for the jump density i(&). We will select the two-sided ex-
ponential density
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(€)= (y12)e "

for two main reasons. On the one hand it can be of interest in
finance, the field that motivated this work in the first in-
stance. Even though it is well established that PDFs of finan-
cial returns show a power-law decay [29], there is an increas-
ing amount of evidence pointing to the fact that small and
moderate returns are better described through a Laplace
law—see [30] and references therein. On the other hand, one
of the main motivations of this section is the introduction
and subsequent analysis of a case for which we can obtain
closed expressions. It is clear from Eq. (30) that when the
characteristic function of h(§) is intricate this goal will be

well out of reach. In our case h(w) is the inverse of a
polynomial:

h(w) =

L A= 22 (33)

Y+ y-iw

We incidentally note that now the variance of the process
is given by Eq. (32) where u;=1/v and u,=2/*. When 0
< eSzl one can show that the Fourier inversion of Eq. (30)
reads

-\t

ye o £\12 _
plx, ) =e™M8x) + = ~| errawne] (2 ur)
2VE Jnyfxye \ U

A\ (-8 5
—Nel = | L(2vur) |1, e — eN2y2|x|? |du
u €

(34)

(0<e<1), where I,(z) are modified Bessel functions. Al-
though the case e=1 is contained in Eq. (34) it can be written
more explicitly as

A\t
p(6,1) = e N S(x) + g\ /WI’ 2y Ne M (35)
Y|X

The recovery of the independent case e=0 from Eq. (34) is a
delicate issue that deserves special treatment. In this case,

one has
)\t 1/2 [
plx,1) = e™Mo(x) + 7(—> f Lt
T 0 U
T DY )
X -—— -\t ]d 36
exP( YA u  (36)
(e=0).

We can now graphically explore some of the most rel-
evant properties of the unconditional propagator in the ana-
lyzed example. However, as we will show, our example will
share those traits with any process that presents Poissonian
waiting times, i.e., for which Eq. (32) stands. In Fig. 1 we
plot the regular part of the probability density function (in y
units) for different values of e. In particular, we present the

’In order to get Egs. (34)—(36), as well as all the numerical results
presented below, it is somewhat simpler to start from Eq. (29) and
use Eq. (33) to invert first the Fourier transform and finally the
Laplace transform.
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cases of (i) a strongly anticorrelated process (e close to —1),
Fig. 1(a); (ii) a weakly anticorrelated process, Fig. 1(b); (iii)
the independent case (e=0), Fig. 1(c); (iv) a weakly corre-
lated process, Fig. 1(d); (v) a strongly correlated process
(€ close to 1), Fig. 1(e); and finally, (vi) the completely per-
sistent case (e=1), Fig. 1(f). The visible effect of antipersis-
tent memory in the process is that the probability density
function becomes narrower around x=0. Thus, for larger
negative values of €, the system tends to remain longer near
the origin, and the process exhibits subdiffusive behavior for
small time scales. In fact, from Eq. (32) we have for Ar<<1
that

o(t) = OX3(1) = Vot + euth2,

and therefore the process is subdiffusive for €<<0, diffusive
in the independent case (recall that this statement is valid for
all time scales), and superdiffusive when €>0.

For large positive values of the correlation parameter €
[see Figs. 1(e) and 1(f)], the unconditional propagator pre-
sents another interesting property: there are two modes in the
probability density function. These two modes are located in
the vicinity of the conditional first moments (X®*)(r)),

o

(X(i)(t)> — xp(t)(x,t)dx =+ Mlli(l _ e—)\(l—f)t)’
—€

—o0

and become more and more noticeable for increasing values
of €, as we show in Fig. 2(a). However, this apparent bimo-
dality must disappear for large time scales, since if A¢>1 we

have’
2 2
o(t) ~ 1/ (,u.z+ Lle))\t,
1-€

whenever €# 1. This means that we must eventually attain
the diffusive limit, as depicted in Fig. 2(b). Only in the com-
pletely persistent case (e=1) is the phenomenon not of tran-
sient nature, because in this case the process is superdiffusive
at all time scales:

—_—
o(t) = Vot + uIN>F.

V. A WEAKLY DEPENDENT MODEL

Obtaining exact expressions for the propagator is usually
quite involved, not to say impossible, in many practical situ-
ations, and we have to resort to approximations based on
perturbation solutions of the integral equation (8). With this
purpose in mind we will work with the following form of the
joint density that generalizes the jump density given in Eq.
(14):

&) =p" 1)1 +eg(x",1'|€,7)], (37)

where p(x,1) is the unconditional joint density satisfying

p(x'.t'

3Note that the expression inside the square root is positive definite
even when —1 =< e<0 because the Cauchy-Schwarz inequality im-
plies that ,u,% <, for h(x") #[8(x" —c)+ 8(x" +¢)]/2. The latter case
corresponds to a process that moves back and forth between two
fixed points, when e=—1.
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FIG. 1. Probability density function for different degrees of correlation: e= (a)-0.8, (b) —0.2, (c) 0, (d) 0.2, (e) 0.8, and (f) 1. We can
see how the negatively correlated processes concentrate the probability around the origin, whereas the positively correlated processes spread
faster. Within this context, if the correlation is large enough, the system shows a transient bimodality.

plx’,1") =f er px"t'[& Dp(& NdE,  (38)
0 —o0

and the function g(x’,t’|§, 7) indicates the correlations be-
tween the waiting time and the jump of the current sojourn
and those of the preceding sojourn. € is a parameter measur-
ing the strength of this correlation. In what follows we will
suppose that € is small, i.e., the model is weakly dependent.
The function g is not arbitrary and must satisfy two consis-
tency conditions. Indeed, from the normalization of the den-
sities p(x',t'|€,7) and p(x',1'),

f dt’f p(x’,1'
0 —0

it immediately follows that

& 1dx’' =f dt'f p(x',t")dx' =1,
0 —o0

& mdx' =0. (39)

fdt'f px’,1")g(x" 1’
0 —o0

On the other hand, plugging Eq. (37) into Eq. (38) and again
taking into account normalization, we get

f dff p(& g1’
0 —o

We also observe that, if p(x’,t")g(x’',t'|£€,7) and
p(&,7)g(x",t"| &, 7) are integrable functions with respect to ¢’
and 7, respectively, then for the consistency conditions Egs.
(39) and (40) to hold it suffices that

& 7dé=0. (40)

061115-7



MIQUEL MONTERO AND JAUME MASOLIVER

0.14 \

0.12 ¢

TRTT
0000
o N®;

0.10

o]
1l

—_
o

0.08

0.06

Probability density

0.20

0.15

0.10

Probability density

0.05

0.00 G

(b)

FIG. 2. (Color online) Roles of € and ¢ in the bimodality of the
probability density function. In (a) we can see how bimodality be-
comes more evident for larger values of €, when the value of A\t
=4.0 is kept fixed. In (b) we can check how this feature finally
disappears even in a strongly correlated process, €=0.9. We have
used the standard deviation of the process, (), in order to make
the plots commensurable.

JP(X’J')g(X’,t’é,T)dX'=f 8", t'[€ 1)p(£, 1)dE=0.

(41)

The starting point of our analysis is the renewal equation
for the joint Fourier-Laplace transform of the propagator
plw,s| &, 7). Substituting then Eq. (37) into Eq. (11), we have

f,T)+f dt'e‘”lf ei“’x,p(x’,t’)

0 —©

Plw,s]é,7) = polw,s

X[1+eg(x',t'|& D) ]p(w,s]x",t")dx".  (42)

Assuming that € is small, we look for a solution to this equa-
tion in the form

Plo.slén) =G(w,5) + 2 €D (w,5]£7). (43)
n=1

In order to proceed further we need to know the depen-

dence on € of the propagator prior to the first sojourn. From

Egs. (9), (10), and (37), we write

PHYSICAL REVIEW E 76, 061115 (2007)

polx,tl& 1) = 5(x)f dl’f p(x’, [ + eg(x',t'|€,7)]dx’,

but
fdt’f p(x’,t")dx" =W¥(z),
t —o0

and using the consistency condition (41) we finally get

& 1) =0x)V(1); (44)

polx,t

hence p, is independent of e.

One can easily see by substituting Egs. (43) and (44) into
Eq. (42) that the zeroth-order g(w,s) corresponds to the in-
dependent case,

_ P (s)
qo,5) = ————,
1 - pl(w,s)
while for n=1,2,3,... we have the recursive integral equa-
tions
ﬁ(")(w,s &= Q(n—l)(w’s ED+ f dlre—st’f eiwx,p(x,,l,)
0 —o0
Xﬁ">(w,s x',t")dx’, (45)
where
Q(n—l)(w,s f, 7.) — f dt/e—st'J €iwx,p(x,,t,)g(x/,t' g’ T)
0 —oo
X p" W (w,s]x" 1" )dx' (46)
and
Q(O)(w,s f’ T) = q(w,S)J dtre—st’f eiwx’p(xr’tr)
0 —o0

Xg(x',t'|& 7)dx'. (47)

In the Appendix we show that the solution to Eq. (45) is
given by the recursive expression (n=1,2,3,...)

ﬁ”)(w,s S’T) =J d[/e—sz’f eiwx/p(x’,t')
0 —®

g’T)+ : G(x’,t’|w,s)>

1-plw,s)
x',t")dx', (48)

oy

Xﬁ(”_l)(a},s

where

G(x',t'|w,s) Ef dTe_”f e"%p(&,1)g(x' t'|E 1dE

0 —o0
(49)
and
P(s)

7(w,s S —
P, 1-plw,s)

x',1") =q(w,s) =

For n=1 we have
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ﬁ“)(w,s &)= q(w,s)f dt'e_“,f eiwx’p(x’,t’)
0 —o0
X x',t' T+ ———————
(g( &) I~ Has)
XG(x',t' w,s))dx’,

which, after defining

§,T)EJ dt’e_”’f e p(x' 1) g(x' 1’

0

g)(w,s & 1)dx’'

(50)
and [cf. Eq. (49)]

C~;p(w,s)EJ dt’e_”,J ei‘”x,p(x',t’)G(x’,t’ w,s)dx’,
0 —o0

(51)

can be written as

(e, &7+ %@,m,@)qm,g.

Therefore, the joint Fourier-Laplace transform of the propa-
gator up to first order in € is

Flw,s|é 7 = {1 + e(g"p(w,S|§,T) + TG_’%)
i

. 52
1 _ﬁ(w’s) ( )

+ 0(62):|

From the above expression for the conditional propagator
we can also get the unconditional propagator defined by

p(x,t)=f dff p(& Dp(x,1]€, 7)dE. (53)
0 —00

From Eq. (52) and taking into account the normalization of
p(&,7), we have

Plw,s) = [1 + e<f de p(&1g (w,s
0 —00

§ndé
+ Gpl@s) Ew,s) ) + 0(52)] —‘Ii(s) .
1 -plw,s) 1 -plw,s)

But from Egs. (40) and (50) one can easily see that

f dr f p(E DT, (.5
0 —o0

&7déE=0.

Hence

P(s)
0(é >— 54
(€) | (o) (54)

plw,s) = <l + E—GP(:U;S) +
l_p(was)
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We will finally present an instrumental example of the use
of the perturbation technique just developed. We assume, as
in Sec. IV, that the joint density p factorizes as [cf. Egs. (12)
and (14)]

&1 =Yt )h(x)[1 + eg(x'|8)], (55)

where |€| <1 and A(€) is an even function of & In contrast to
the solvable case discussed in Sec. IV in which the correla-
tion g(x’|€) depends solely on the signs of consecutive
jumps [cf. Eq. (18)], we now assume that the correlation
depends also on jump sizes. We thus suppose

p(x',1t'

g(x']&) = sgn(x")e W HED son(g) (56)

(a=0). With this correlation, we will evaluate the expres-
sions for the propagators p(x,z|€) and p(x,f) as given, re-
spectively, by Egs. (52) and (54) for their joint Fourier-
Laplace transform up to first order in €. To this end we need
the explicit expressions for the auxiliary quantities g,(w,s|€)
and 5p(w,s) which appear in Egs. (52) and (54).

Using Eqgs. (55) and (56), the expression for g,(w,s
defined in Eq. (50) can be written as

3
,(w,5]€) = (s)sgn(&)eé f ) sgn(x")e™ A Ip(x")dx' .

oe]

But taking into account the symmetry of /(x’) expressed by
Eq. (17), we can write

o

J sgn(x’)ei“'xl_”l"llh(x’)dx’ = 2if e“”'h(x’)sin wx'dx’.

Hence
2,(@.5]8) = 2i(s)h(w,a)e™"E sgn(8), (57)
where
fls(w,a)EJ e h(x")sin wx’dx’ (58)
0

is the Fourier sine transform of e~ h(x").
Proceeding in an analogous way, we see that the expres-

sion for ép(w,s) defined in Eq. (51) is given by

s}

Gyw,s) = t?fz(S)(f

—00

2
sgn(x’)h(x’)ei“’x"“x’dx’) .
But as we have just seen [cf. Eq. (58)]

f Sgn(x/)h(x/)eiwx'—a‘x,‘dx= Ziﬁs(w’a);

whence

G (w,5) = — 442 (s)h(w,a). (59)
Substituting Egs. (57) and (59) into Eq. (52) yields
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plw,s|é) = [1 + e&(s)ﬁs<w,a)(zie-“'§ sgn(§)

) o) | A0
1 — i(s)h(w) 1 = (s)h(w)
For Poissonian sojourns [cf. Eq. (28)] we can take the

inverse Laplace transform of this expression, which yields
the conditional characteristic function

é) — e—)\l[l—ﬁ(a))]

Plw,t

+ E[ZiM(— e My e_”[l_g(“’)])e‘“m sgn(§)
h(w)

h(wa) |’ -

- 4( #) {e™ + [t (w) - 1]eMI-H@))
h(w)

+0(&). (60)

The unconditional characteristic function can be analogously
obtained through Egs. (54) and (59) or else directly by sub-
stituting Eq. (60) into

o0

Plot)=| plo,1ér(é)dé

—00

by either way one chooses, the final result is
~ 2
. M1 hy(w,a)
Plo,1) = e MMl _ gl =——
h(w)
e+ [Nth(w) - 1]e MO 1 o).

For this example the variance of the
(X*(1))=— p(w,s)/ dw?| -, is easily seen to be

process,

(X2(1)) = Ny + 8ex(e™M + Nt - 1),

where

w,=—h"0) and «,= ES’ 0,a).

VI. SUMMARY AND CONCLUSIONS

We have presented a generalization of the CTRW which
includes correlations between consecutive sojourns and
jumps. We have derived the general equations governing the
time evolution of the dependent walk and have solved them
exactly in some particular instances. We have also developed
a general perturbation technique aimed at treating, within
any desired degree of accuracy, weakly dependent models;
that is, those models in which there is a low correlation
between consecutive events.

Due to the extensive analytical apparatus and technical
aspects contained in this paper, which may obscure the main
objective and perhaps discourage potential users of the tech-
nique presented, we shall now summarize the key expres-
sions of our development.

PHYSICAL REVIEW E 76, 061115 (2007)

The model is based on a two-dimensional Markov series
of jumps and sojourns, with a conditional joint density
p(&,7'|&,7) defined in Eq. (7). The main objective of the
CTRW is obtaining the so-called propagator p(x,¢| &, 7), that
is, the (conditional) probability density function of the pro-
cess X(7), provided we know the value of the last jump size &
and waiting time 7. The propagator obeys a renewal equation
[cf. Eq. (8)] and its Fourier-Laplace transform satisfies the
integral equation (11). We have been able to find an exact
solution to this equation when the joint density has the fol-
lowing form [cf. Egs. (12) and (14)]:

p(&', 7| 7) = p(7)h(&)[1 + e sgn(£)sgn(§)],  (61)

for which the correlation between jumps depends on whether
they are increasing or decreasing, but not on their magnitude.
In such a case the Fourier-Laplace transform of the uncondi-
tional propagator is given by [cf. Eq. (25)]

1 - e(s)h(w)
1= (1 + € is)h(w) + 4eg(s)| H(w)[?

In the case of Poissonian sojourns and Laplacian jumps we
can invert this expression and obtain the propagator p(x,?)
for different values of € [see Eqs. (34)-(36)]. From these
expressions, we can see some interesting properties due to
the existence of correlations such as the transitions from uni-
modal to bimodal distributions (see Figs. 1 and 2).

Although we have been able to solve Eq. (11) in the spe-
cial case provided by Eq. (61), a general solution to the prob-
lem for any form of the joint density p seems to be out of
reach. However, in many practical situations the degree of
dependence between current and past events is weak. In such
cases it is possible to derive a perturbation technique which
allows for an approximate solution to the above equation to
any desired degree of accuracy. We thus write

plo,s) =

p(&.7|&7) =p(& 7)1 +eg(&.7]€7)],
where p(€,7') is the wunconditional joint density,
g(&,7'|&,7) indicates correlation, and €, now a small quan-

tity, measures the strength of such a correlation. The function
g is not arbitrary and must obey some consistency conditions
[cf. Eq. (41)] in order to keep the normalization of the p’s.

The propagator can be written in the form of an infinite
series,

oo

E7)=G(w,5) + >, €5 (w,s

n=1

Plo,s &),

where g(w,s) is the propagator when no correlation is
present, that is, it corresponds to the propagator of the inde-
pendent CTRW and is given by Eq. (6). The rest of the terms
P"Nw,s| € 7) (n=1,2,3,...) obey the integral equation (45)
whose solution is given by Eq. (48), which allows us to
compute p"(w,s|&,7) if we know p" D(w,s|&, 7). Obvi-
ously, by repeating this operation one can obtain
ﬁ(”)(a),s|§, 7) for any n=1,2,3,... and, hence, an approxi-
mate expression for the propagator to any desired degree of
accuracy, although, in many cases, the lowest order n=1 will
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suffice. In such a case the explicit expression for the propa-
gator is [cf. Egs. (50)—(52)]

Plw,s|é7) = |:1 + 6<§p(w,s E7)+ —Gp(f);s)> + 0(62)]
l—p(a),s)
W(s)
1-p(w,s)’

and for the unconditional propagator defined in Eq. (53) we
have

plo,s) = (1 e G 0(&))#

1-plw,s) ~plw,s)’

We end this work by recalling that our first motivation to
treat the problem of dependent CTRWs arose from our work
in econophysics. In dealing with extreme time statistics of
financial time series, in particular with the mean exit times of
the process out of a given interval, we noticed that the ob-
served behavior cannot be properly described by the tradi-
tional (i.e., independent) CTRW; one needs some degree of
correlation between present and past events [25]. In spite of
this specific motive, we certainly believe that a general de-
velopment of the dependent CTRW—at least for a Markov-
ian joint density—may be of broad interest because the in-
dependence assumption in the traditional CTRW is just a first
approximation for many physical phenomena that are ame-
nable to study within the CTRW framework [2,3]. In any
case, in forthcoming presentations we will apply the method
to financial time series.
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APPENDIX: SOLUTION TO A RECURSIVE INTEGRAL
EQUATION

We will solve the recursive integral equation (45):

ﬁ”)(w,s

£ =0""ws

£7)+ f di'e™"
0

XJ ei“”"p(x’,t')ﬁ(">(w,s x',t")dx’,

—00

(A1)

where ”=1’2’3’”." To this end we multiply both sides of
Eq. (A1) by e™0™¢p(&, 7) and integrate over & and 7. We
obtain
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,5),
(A2)

f(")(w,s|w(),s0) = Q(”_l)(w,s|w0,s0) + IS(CUO,SO)F(")(@,S

where p(wy,sy) is the joint Fourier-Laplace transform of

p(&,7),

F"(w,s

(1)0,S0) = f dTe_SOTf eiw()ép(g’ T)P n)(w’s g’ T)dg’

0
(A3)

and
ee]

@Hmewyzfde{ e'p(€,7)

0
X Q" w,s]é 7)dE. (Ad)
Setting wy=w and sy=s in Eq. (A2), we get
~ On=1) w,s|w,s
F(")(w,s w,s) = M
1 -plw,s)
which introduced back into Eq. (A2) yields
F(,5]wg,50) = 0" (w, 5]y, 50)
p(wg,s9) ~
PO G0 sl (43)
1 -plw,s)

From the definition of F"(w,s|wy,so) given in Eq. (A3), we
see that the Fourier-Laplace inversion with respect to w, and
5o of this quantity is

&),

and a similar expression holds for the inversion of
Q(Vl—l)(w’s
reads

F(n)(w’s wO’SO) - P(f, T)ﬁ(n)(w’s

wg,50). Therefore, the inversion of Eq. (A5)

H(n=1)
67+ 0" s

w,s).

Pw,s|6,7) = 0" (w,s

(A6)
"D(w,s|w,s), given in Eq.

£.7)

By combining the definition of 0
(A4) when wy=w and so=s, with that of Q" D(w,s
given in Egs. (46) and (47), we write

Q("_l)(w,s w,s):f dt’e_”/f eiwx/p(x',t')G(x',t’ ,s)
0 —o0
Xﬁ‘”‘”(m,s x',t")dx', (A7)
where
G(x'.t'|w,s) = f dTe_”J e%p(€,7)g(x’ t'|& TdE.
0 —0

Finally, substituting Eqs. (46) and (A7) into Eq. (A6), we
obtain the recursive solution given in Eq. (48).
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